13 research outputs found

    A Cox-based Model for Predicting the Risk of Cardiovascular Disease

    Get PDF
    This research is aimed to develop a 10-year risk prediction model and identify key contributing Cardiovascular Disease (CVD) risk factors. A Cox proportional hazard regression method was adopted to design and develop the risk model. We used Framingham Original Cohort dataset of 5079 men and women aged 30 - 62 years, who had no overt symptoms of CVD at the baseline. Out of them, 3189 (62.78%) had an actual CVD event. A 10-year CVD risk model based on multiple risk factors (such as age, sex, body mass index (BMI), hypertension, systolic blood pressure, cigarettes per day, pulse rate, and diabetes) was developed in which heart rate was identified as one of the novel contributing risk factors. We validated the model via statistical and empirical validation methods. The proposed model achieved an acceptable discrimination and calibration with C-index (receiver operating characteristic (ROC)) being 0.71 from the validation dataset

    Current Challenges and Barriers to the Wider Adoption of Wearable Sensor Applications and Internet-of-Things in Health and Well-being

    Get PDF
    The aim of this review is to investigate barriers and challenges of Wearable Sensors (WS) and Internet-of-Things (IoT) solutions in healthcare. This work specifically focuses on falls and Activity of Daily Life (ADLs) for ageing population and independent living for older adults. The majority of the studies focussed on the system aspects of WS and IoT solutions including advanced sensors, wireless data collection, communication platforms and usability. The current studies are focused on a single use-case/health area using non-scalable and ‘silo’ solutions. Moderate to low usability/ userfriendly approach is reported in most of the current studies. Other issues found were, inaccurate sensors, battery/power issues, restricting the users within the monitoring area/space and lack of interoperability. The advancement of wearable technology and possibilities of using advanced technology to support ageing population is a concept that has been investigated by many studies. We believe, WS and IoT monitoring plays a critical role towards support of a world-wide goal of tackling ageing population and efficient independent living. Consequently, in this study we focus on identifying three main challenges regarding data collection and processing, techniques for risk assessment, usability and acceptability of WS and IoT in wider healthcare settings

    Blood Pressure Estimation from Electrocardiogram and Photoplethysmography Signals Using Continuous Wavelet Transform and Convolutional Neural Network

    Get PDF
    Cuff-less and continuous blood pressure (BP) measurement has recently become an active research area in the field of remote healthcare monitoring. There is a growing demand for automated BP estimation and monitoring for various long-term and chronic conditions. Automated BP monitoring can produce a good amount of rich health data, which increases the chance of early diagnosis and treatments that are critical for a long-term condition such as hypertension and Cardiovascular diseases (CVDs). However, mining and processing this vast amount of data is challenging, which is aimed to address in this research. We employed a continuous wavelet transform (CWT) and a deep convolutional neural network (CNN) to estimate the BP. The electrocardiogram (ECG), photoplethysmography (PPG) and arterial blood pressure (ABP) signals were extracted from the online Medical Information Mart for Intensive Care (MIMIC III) database. The scalogram of each signal was created and used for training and testing our proposed CNN model that can implicitly learn to extract the descriptive features from the training data. This study achieved a promising BP estimation approach has been achieved without employing engineered feature extraction that is comparable with previous works. Experimental results demonstrated a low root mean squere error (RMSE) rate of 3.36 mmHg and a high accuracy of 86.3% for BP estimations. The proposed CNN-based model can be considered as a reliable and feasible approach to estimate BP for continuous remote healthcare monitoring

    Cardiopulmonary resuscitation (CPR) training strategies in the times of COVID-19: A systematic literature review comparing different training methodologies

    Get PDF
    Background: Traditional, instructor led, in-person training of CPR skills has become more challenging due to COVID-19 pandemic. We compared the learning outcomes of standard in-person CPR training (ST) with alternative methods of training such as hybrid or online-only training (AT) on CPR performance, quality, and knowledge among laypersons with no previous CPR training.Methods: We searched PubMed and Google Scholar for relevant articles from January 1995 to May 2020. Covidence was used to review articles by two independent researchers. Effective Public Health Practice Project (EPHPP) Quality Assessment Tool was used to assess quality of the manuscripts.Results: Of the 978 articles screened, twenty met the final inclusion criteria. All included studies had an experimental design and moderate to strong global quality rating. The trainees in ST group performed better on calling 911, time to initiate chest compressions, hand placement and chest compression depth. Trainees in AT group performed better in assessing scene safety, calling for help, response time including initiating first rescue breathing, adequate ventilation volume, compression rates, shorter hands-off time, confidence, willingness to perform CPR, ability to follow CPR algorithm, and equivalent or better knowledge retention than standard teaching methodology.Conclusion: AT methods of CPR training provide an effective alternative to the standard in-person CPR for large scale public training

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme

    Smart monitoring systems for alert generation during anaesthesia

    No full text
    Man has a limited ability to accurately and continuously analyse large amounts of data. Observers are typically required to monitor displays over extended periods and to execute overt detection responses to the appearance of low probability critical signals. The signals are usually clearly perceivable when observers are alerted to them, but they can be missed in the operating environment. The challenge is to develop a computer application that will accumulate information on a variable, or several variables, over time and identify when the trend in observations has changed. In recent years, there has been a rapid growth in patient monitoring and medical data analysis using decision support systems, smart alarm monitoring systems, expert systems and many other computer aided protocols. The expert systems have the potential to improve clinician performance by accurately executing repetitive tasks, to which humans are ill-suited. Anaesthetists working in the operating theatre are responsible for carrying out a multitude of tasks which requires constant vigilance and thus a need for a smart decision support system has arisen. The decision support tools capable of detecting pathological events can enhance the anaesthetist’s performance by providing alternative diagnostic information. The main goal of this research was to develop a clinically useful diagnostic alarm system using two different techniques for monitoring a pathological event during anaesthesia. Several techniques including fuzzy logic, artificial neural networks, control and monitoring techniques were explored. Firstly, an industrial monitoring system called Supervisory Control and Data Acquisition (SCADA) software is used and implemented in the form of a prototype system called SCADA monitoring system (SMS). The output of the system in detecting hypovolaemia was classified into three levels; mild, moderate and severe using SCADA’s InTouch software. In addition, a new GUI display was developed for direct interaction with the anaesthetists. Secondly, a fuzzy logic monitoring system (FLMS) was developed using the fuzzy logic technique. New diagnostic rules and membership functions (MF) were developed using MATLAB. In addition, fuzzy inference system FIS, adaptive neuro fuzzy inference system ANFIS and clustering techniques were explored for developing the FLMS’s diagnostic modules. The raw physiological patient data acquired from an S/5 monitor were converted to a readable format using the DOMonitor application. The data was filtered, preprocessed, and analysed for detecting anaesthesia related events like hypovolaemia. The accuracy of diagnoses generated by SMS and FLMS was validated by comparing their diagnostic information with the one provided by the anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist’s, SMS’s, and FLMS’s diagnoses. In offline analysis both systems were tested with data from 15 patients. The SMS and FLMS achieved an overall agreement level of 87 and 88 percent respectively. It implies substantial level of agreement between SMS or FLMS and the anaesthetists. These diagnostic alarm systems (SMS and FLMS) have shown that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in providing decision support to anaesthetists
    corecore